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Abstract
Crocosphaera watsonii is a unicellular N2- fixing (diazotrophic) cyanobacte-
rium observed in tropical and subtropical oligotrophic oceans. As a diazotroph, 
it can be a source of bioavailable nitrogen (N) to the microbial community in 
N- limited environments, and this may fuel primary production in the regions 
where it occurs. Crocosphaera watsonii has been the subject of intense 
study, both in culture and in field populations. Here, we summarize the current 
understanding of the phylogenetic and physiological diversity of C. watsonii, 
its distribution, and its ecological niche. Analysis of the relationships among 
the individual Crocosphaera species and related free- living and symbiotic 
lineages of diazotrophs based on the nifH gene have shown that the C. wat-
sonii group holds a basal position and that its sequence is more similar to 
Rippkaea and Zehria than to other Crocosphaera species. This finding war-
rants further scrutiny to determine if the placement is related to a horizontal 
gene transfer event. Here, the nifH UCYN- B gene copy number from a recent 
synthesis effort was used as a proxy for relative C. watsonii abundance to 
examine patterns of C. watsonii distribution as a function of environmental 
factors, like iron and phosphorus concentration, and complimented with a 
synthesis of C. watsonii physiology. Furthermore, we have summarized the 
current knowledge of C. watsonii with regards to N2 fixation, photosynthesis, 
and quantitative modeling of physiology. Because N availability can limit pri-
mary production, C. watsonii is widely recognized for its importance to carbon 
and N cycling in ocean ecosystems, and we conclude this review by highlight-
ing important topics for further research on this important species.
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INTRODUCTION

Crocosphaera watsonii, a unicellular cyanobacterium, 
is one of the key N2- fixing planktonic microorgan-
isms (diazotrophs) in tropical and subtropical oceans. 
C. watsonii WH8501 (Figure 1a) and WH8502 strains 
were initially isolated as Erythrosphaera marina gen. 
nov. sp. nov. in 1984 (Waterbury et al., 1988; Waterbury 
& Rippka, 1989), but the importance of C. watsonii as 
a diazotroph was only realized a decade later. The dis-
covery of nifH genes from pico-  and nano- plankton 
(0.22–20 μm fraction; Zehr et  al.,  1998) and the ob-
servation of phycoerythrin containing 2–3 μm unicellu-
lar cells (Figure 1b,c) in low- nitrogen waters that had 
measurable phosphorus (Neveux et al., 1999) pointed 
to the importance of N2 fixation from unicellular cya-
nobacteria (Zehr et  al.,  2001). The significance of 
unicellular cyanobacteria as diazotrophs was later evi-
denced by high rates of N2 fixation from in situ <10 μm 
fraction samples (Montoya et  al.,  2004). The unicel-
lular diazotrophic cyanobacteria are phylogenetically 
divided into three groups based on nifH gene and 
16S rRNA gene sequences: (i) symbiotic Candidatus 
Atelocyanobacterium thalassae (Oren et  al.,  2020) 
corresponding to UCYN- A as recovered in nifH field 
studies (Zehr et  al.,  2008), (ii) free- living autotrophic 
C. watsonii corresponding to UCYN- B in nifH studies 
(Mareš et  al.,  2019; Zehr et  al.,  2001), and (iii) other 
Crocosphaera (formerly “Cyanothece”) species, such 
as C. subtropica (corresponding to UCYN- C nifH 
cluster) and C. chwakensis (Foster et al., 2007; Mareš 
et al., 2019; Turk- Kubo et al., 2017; Zehr et al., 2001). In 
this review, we use UCYN- B when we talk about nifH 
amplicon distribution, C. watsonii for culture studies, 
and Crocosphaera if the data have not been identified 
at the species level.

Marine N2- fixation studies historically focused on 
Trichodesmium, and this genus has been the subject 
of a number of intensive reviews of its physiological fea-
tures, distribution, and physiology (Capone et al., 1997; 
Kranz et al., 2011; McKinna, 2015). The symbiotic uni-
cellular diazotroph Candidatus Atelocyanobacterium 

thalassae (UCYN- A) was discovered relatively recently 
(Zehr et  al., 1998) and has been the subject of inter-
est and extensive research efforts (Farnelid et al., 2016; 
Zehr et al., 2016). The function and the distribution of ma-
rine diazotrophs, including those of Crocosphaera wat-
sonii (UCYN- B), have been summarized previously (Luo 
et  al.,  2012; Masuda et  al.,  2022; Shao et  al.,  2023; 
Tang & Cassar,  2019; Thompson & Zehr,  2013; Zehr 
& Capone, 2020). In this review, we have focused on 
C. watsonii, summarizing the phylogenetic clustering, 
physiological diversity, ecological niche, and regulation 
of photosynthesis and N2 fixation of C. watsonii. We 
conclude by summarizing the knowledge obtained by 
quantitative modeling of C. watsonii physiology.

PHYLOGENETIC CLUSTERING

The ability to fix N2 occurs across cyanobacterial lin-
eages, and the complete nif gene operon has been 
detected in more than one- third of sequenced cyano-
bacterial genomes (Latysheva et  al.,  2012; Watanabe 
& Horiike, 2021). Among marine plankton, diazotrophs 
are represented by several phylogenetically sepa-
rated lineages (see Appendix  S1 in the Supporting 
Information; Figure  2a). Crocosphaera spp. (UCYN- B 
and - C) and Candidatus Atelocyanobacterium tha-
lassae (UCYN- A) form a unique lineage of unicellular 
representatives of cyanobacterial diazotrophic marine 
plankton (Figure 2a) that belongs to a broader cluster 
of single- celled N2- fixing cyanobacteria inhabiting vari-
ous ecosystems, including terrestrial, epilithic, soil, and 
freshwater habitats (genera Rippkaea, Aphanothece, 
Gloeothece; Mareš et  al.,  2019). The systematics of 
unicellular cyanobacteria has been a challenge due 
to morphological convergence and researchers using 
diverse taxonomic concepts over time, including tradi-
tional botanical (Geitler, 1932), bacteriological (Rippka 
et al., 1979), and more recently phylogenetic (Johansen 
& Casamatta,  2005) approaches. Recently, the tax-
onomy of unicellular diazotrophs was revised based 
on modern comprehensive techniques, which involved 

F I G U R E  1  (a) TEM image of Crocosphaera watsonii WH8501, (b) phycoerythrin, and (c) chlorophyll autofluorescence images of 
C. watsonii PS0609. St, starch granule; Ty, thylakoid membrane. 
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   | 3CROCOSPHAERA WATSONII

F I G U R E  2  Phylogeny of Crocosphaera and related organisms. (a) Phylogenomic tree (120 conserved proteins) of cyanobacteria, 
showing the clustering of planktonic marine diazotrophs in multiple separated derived lineages. The Crocosphaera (UCYN- B and C) 
and UCYN- A lineages host unicellular diazotrophic cyanobacteria, while other planktonic marine cyanobacteria are either filamentous 
diazotrophs or unicellular non- diazotrophs. (b) Comparison of phylogenetic clustering within the UCYN- A, B, and C lineages based on 
16S rRNA gene, multilocus (120 proteins), and nifH trees. The UCYN A–C clades and the clade of related diatom endosymbionts are 
detectable in all three trees; however, the topology of the nifH tree is incongruent with the conserved loci, indicating possible horizontal 
gene transfer among related lineages. The methods for phylogenetic inference are provided as Appendix S1. 
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morphological observations, transmission electron mi-
croscopy (TEM), phylogenetic analysis (of the 16S rRNA 
gene and two additional housekeeping loci), ITS rRNA 
region secondary structure prediction, and assessment 
of the source habitat type (Mareš et al., 2019). The most 
striking result from the analysis of rRNA operon data 
by Mareš et  al.  (2019) was that several strains previ-
ously referred to as Cyanothece sp. or Gloeocapsa sp. 
turned out to be members of the genus Crocosphaera. 
Consequently, the genus Crocosphaera currently con-
tains not only C. watsonii (UCYN- B) but also species 
corresponding to the UCYN- C clade: C. subtropica 
(previously Cyanothece sp. ATCC51142), C. chwakensis 
(previously Cyanothece sp. CCY0110), and other spe-
cies still waiting to be described (Figure 2b). Recently, a 
novel Crocosphaera species, Crocosphaera waterburyi, 
has been proposed based on metagenomic analysis 
from the North Pacific Ocean (Cleveland et al., 2023), 
and so the genus continues to expand. Furthermore, 
a morphologically and ecologically convergent group 
of diazotrophic Crocosphaera- like isolates has formed 
a separate genus- level lineage described as Zehria 
(Mareš et al., 2019).

A closer look at the whole lineage (Figure 2b) reveals 
that widespread non- photosynthetic diazotrophic uni-
cellular endosymbionts of eukaryotic algae have formed 
sister clades to Crocosphaera. One of them, UCYN- A 
or Candidatus Atelocyanobacterium thalassae, con-
tained endosymbionts of marine Prymnesiophytes 
(Hagino et al., 2013; Thompson et al.,  2012); another 
more distantly related lineage contained the endosym-
bionts (also called “spheroid bodies”) of rhopalodiacean 
diatoms (Nakayama & Inagaki,  2017). In both cases, 
the symbionts had abandoned oxygenic photosynthe-
sis; they function almost as organelles, providing fixed 
N2 to their hosts in exchange for fixed carbon (Prechtl 
et  al.,  2004; Thompson et  al.,  2012). Intriguingly, the 
marine diatom Climacodium frauenfeldianum has been 
shown to be capable of hosting Crocosphaera as a 
photosynthetic diazotrophic endosymbiont (Caputo 
et al., 2019; Carpenter & Janson, 2000).

The clustering and relationships among the individual 
Crocosphaera- like free- living and symbiotic lineages 
seem to be identical based on the 16S rRNA gene and 
a robust set of 120 universal bacterial housekeeping 
proteins (Parks et al., 2021) (Figure 2b), although the 
whole genome is missing for Zehria. Although the cor-
responding clades can be identified in the nifH tree 
(Figure  2b), the C. watsonii (UCYN- B) group holds a 
basal position, and its nifH gene sequences are more 
similar to Rippkaea and Zehria (89.2%–90.1% pairwise 
identity) than to other Crocosphaera species (80.5%–
85.0%). Such a phylogenetic pattern possibly indicates 
a horizontal gene transfer (HGT) event leading to the 
replacement of the C. watsonii nifH gene by the gene 
from an unknown but related marine unicellular di-
azotrophic cyanobacterium. Alternatively, the 16S rRNA 

gene of Zehria could have been subject to HGT. Based 
on previous reports, HGT in the N2 fixation gene clus-
ter is possible, although uncommon, in cyanobacteria 
(Bolhuis et al., 2010; Latysheva et al., 2012). The nifH 
gene itself seems to exhibit HGT more frequently than 
other nif genes, and its phylogeny is often incongruent 
with the 16S rRNA gene phylogeny in N2- fixing bacteria 
in general (Gaby & Buckley, 2014). Given the scarcity 
of reported HGT events in cyanobacterial rRNA genes 
(Johansen et al., 2017), we suggest that an HGT event 
in the nifH gene of C. watsonii might be more likely than 
in the 16S rRNA gene of Zehria. Future studies that in-
clude whole genome sequencing of Zehria are needed 
to validate this hypothesis.

Studies suggest low genomic diversity of 
Crocosphaera watsonii (Webb et  al.,  2009; Zehr 
et al., 2007). For example, analysis of a set of five func-
tional genes showed greater than 99% nucleotide iden-
tity among seven C. watsonii strains (Zehr et al., 2007). 
In addition, sequences of the internal transcribed spacer 
region between the 16S and 23S rRNA genes (ITS rRNA 
region) from phenotypically distant cultures were highly 
similar (Webb et al., 2009). Cultivated and in situ C. wat-
sonii genomes have shown an unusually high number 
of transposases (Bench et  al.,  2011, 2013; Hewson 
et al., 2009; Mes & Doeleman, 2006; Zehr et al., 2007), 
suggesting a mechanism for adaptation to changing en-
vironmental conditions, which could underpin the vari-
ety of phenotypic differences observed among strains 
(Bench et al., 2011). Whole genome sequences of six 
C. watsonii strains have shown that C. watsonii WH8501 
has a larger genome (6.2 Mb vs. 4.5–5.8 Mb), a higher 
number of transposase genes (1211 genes vs. 165–223 
genes), and a higher number of strain- specific trans-
posase genes (71 vs. 4–19) than the five other strains 
analyzed (Bench et al., 2013). These results suggested 
that the C. watsonii WH8501 strain is an outlier relative 
to the others examined and may not be the most rep-
resentative strain of the natural C. watsonii population. 
However, this warrants further study across a broader 
set of both isolates and field samples.

DISTRIBUTION

Distributions of unicellular diazotrophs, especially 
in the subtropics, have been conventionally as-
sayed by a combination of phycoerythrin detection 
from nano- sized cyanobacteria by epifluorescence 
microscopic observation, flow cytometry, or by fluo-
rometric analysis in the Pacific Ocean (Bonnet 
et al., 2009; Dore et al., 2002; Dugenne et al., 2020; 
Falcon et  al.,  2004; Kitajima et  al.,  2009; Needoba 
et  al.,  2007; Neveux et  al.,  1999; Stenegren 
et al., 2018; Wilson et al., 2017), Atlantic Ocean (Foster 
et al., 2007; Krupke et al., 2013), and Mediterranean 
Sea (Bonnet et al., 2011). Detection of UCYN- B nifH 
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amplicons has been reported from the Pacific Ocean 
(Berthelot et  al.,  2017; Bonnet et  al.,  2008; Church, 
Jenkins, et  al.,  2005; Church, Short, et  al.,  2005; 
Fong et al., 2008; Grabowski et al., 2008; Gradoville 
et al., 2020; Halm et al., 2012; Moisander et al., 2010; 
Needoba et  al.,  2007; Shiozaki et  al.,  2015, 2017; 
Shiozaki, Kondo, et al., 2018; Stenegren et al., 2018; 
Watkins- Brandt et al., 2011; Zehr et al., 2001), Atlantic 
Ocean (Detoni et al., 2022; Foster et al., 2007; Foster, 
Subramaniam, & Zehr,  2009; Goebel et  al.,  2010; 
Krupke et al.,  2013; Langlois et al.,  2008; Martinez- 
Perez et al., 2016; Mulholland et al., 2012; Turk- Kubo 
et  al.,  2011), South China Sea (Kong et  al.,  2011; 
Moisander et  al.,  2008; Shiozaki, Ijichi, et  al.,  2014; 
Wen et  al.,  2017), Indian Ocean (Shiozaki, Ijichi, 
et al., 2014), Arabian Sea (Mazard et al., 2004), Red 
Sea (Foster, Paytan, & Zehr,  2009), and Mekong 
River plume (Bombar et al.,  2011). Luo et al.  (2012) 
established the first comprehensive database of di-
azotrophic nifH gene copy number, and these data 
were used by Tang and Cassar (2019) to compare the 
distribution of Trichodesmium, UCYN- A, UCYN- B, 
and Richelia. Tang and Cassar (2019) reported simi-
lar distributions between UCYN- B nifH copy number 
and Trichodesmium nifH copy number in the Pacific 
but lower copy number distribution in the North 
Atlantic and suggested that this might be the result 
of a positive relationship of UCYN- B nifH copy num-
ber and temperature (Moisander et  al.,  2010) and 
differences in dissolved inorganic phosphorus (DIP) 
concentration. Even though no clear separation of 
diazotrophic groups with depth was observed at the 
global scale, as all groups decreased with depth, 
Tang and Cassar  (2019) noted that UCYN- B and 
UCYN- A nifH copy number exhibited deeper verti-
cal distribution among these groups of diazotrophs. 
The validity of nifH copy number as a proxy for cell 
abundance has been recently questioned (Pierella 
Karlusich et  al.,  2021); however, the ratio between 
nifH copy number and cell abundance for UCYN- B 
has been reported as 1.82 with a significant relation-
ship (Gradoville et al., 2022). This showed that while 
not a direct measure of cells, the nifH copy number 
can be a useful quantitative proxy for Crocosphaera 
abundance (Gradoville et al., 2022).

The comprehensive dataset of UCYN- B nifH gene 
copy number, updated after the study by Tang and 
Cassar (2019), and by Shao et al. (2023) revealed non- 
homogeneous distributions (Figure  3a). We note the 
relative increase in UCYN- B nifH gene copy number in 
the western South Pacific, around Fiji, in the northeast-
ern Pacific, near the Hawaii islands, in the tropical North 
Atlantic, in the western subtropical South Atlantic, in the 
Philippine Sea, and in the eastern north Indian Ocean 
(Figure 3a; Shao et al.,  2023 and references therein). 
The maximum copy number (7.9 × 106 nifH gene copies 
· L−1) was reported from 37 m depth off Fiji (15° S 175° 

E; Moisander et al., 2010; Figure 3a). Diazotroph dis-
tributions can be influenced by many factors including 
nutrient supply and supply ratios (Shiozaki, Kodama, 
& Furuya,  2014; Subramaniam et  al.,  2008), which 
may be the case for some of the areas of increased 
UCYN- B nifH gene copy number. For example, com-
paratively low UCYN- B nifH gene copy number in the 
Indian Ocean may be attributed to higher upward ni-
trate fluxes to the surface because of the shallow nitr-
acline (Sato et al., 2022; Shiozaki, Ijichi, et al., 2014). A 
negative relationship between a shallow nitracline and 
UCYN- B nifH gene copy number was reported from the 
northern South China Sea (Shiozaki, Ijichi, et al., 2014). 
Taken together, identifying the factors that determine 
the distribution of UCYN- B nifH gene copy number is 
an ongoing area of study.

The vertical distribution or UCYN- B nifH gene copy 
number was restricted to above 200 m of depth, with 
>105 nifH gene copies · L−1 observed above 150 m 
(Figure  4a). Temperature seems to be an important 
niche trait for diazotrophs, and the UCYN- B nifH gene 
copy number was observed to increase with increas-
ing water temperature in regional and global studies 
(Moisander et al., 2010; Tang & Cassar, 2019). Although 
the UCYN- B nifH gene copy number was typically high-
est between 25 and 30°C, the UCYN- B nifH gene has 
been identified in regions as cold as 10.1°C (Goebel 
et al., 2010; Shao et al., 2023). Further, the UCYN- B nifH 
gene copy number at >25°C was not always high (>105 
nifH gene copies · L−1), highlighting that temperature 
is not the only explanatory factor influencing UCYN- B 
nifH gene copy number (Figure 4b). Laboratory experi-
ments using clonal cultures have reported the optimum 
temperatures of eight Crocosphaera watsonii strains 
(WH8501, WH8504, WH0002, WH0003, WH0005, 
WH0006, WH0401, and WH0402) to be between 
16 and 36°C (Fu et  al.,  2014; Qu et  al.,  2022; Webb 
et  al.,  2009); this broad range supports the variation 
seen in UCYN- B nifH gene copies as a function of 
temperature (Figure  4b). Despite the breadth of the 
temperature range, UCYN- B nifH gene copies were 
detected at higher temperatures than Trichodesmium 
nifH gene copies by Tang and Cassar (2019), and this 
is consistent with culture data where growth rates of 
C. watsonii strains WH0005, WH0003, WH0401 and 
WH0402 with growth optimum temperature at 28–30°C 
were ~25% less than those of Trichodesmium at 24°C 
and ~50% higher than Trichodesmium at 28°C (Fu 
et al., 2014).

PHYSIOLOGICAL ECOLOGY

The classical view on marine N2 fixation assumes that 
the preferred ecological niches of diazotrophs are lim-
ited mainly to surface waters of oligotrophic areas, char-
acterized by low DIN, saturated dissolved oxygen, and 
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high light intensities (Zehr & Capone, 2020). This view is 
confirmed by patterns in UCYN- B nifH gene copy num-
ber where the copy number was typically highest (>105 
nifH gene copies · L−1) in the surface under low nitrate 
and phosphorus concentrations, that is, <0.02 μM of ni-
trate (t- test; t = −12.115, df = 405, p < 0.001) and <0.14 μM 
phosphate (t- test; t = −17.306, df = 253, p < 0.001; 
Figure  4a,c,d). However, copies of UCYN- B nifH were 
detected in the subsurface and at nutrient concentra-
tions above the 0.02 μM nitrate and 0.14 μM phosphate 
concentrations referenced above (Figure 4a,c,d). Culture 

studies have shown N2 fixation is inhibited by increasing 
the concentration of added NH+

4
 or NO−

3
 (Dekaezemacker 

& Bonnet, 2011; Knapp et al., 2012), and the extent of 
inhibition of fixed N (both NH+

4
 and NO−

3
) on N2 fixation is 

more pronounced under low light intensity (25 μmol pho-
tons · m−2 · s−1) compared to high light intensity (175 μmol 
photons · m−2 · s−1; Garcia & Hutchins, 2014). These re-
sults suggest that Crocosphaera watsonii would likely 
use N2 in low N surface waters and use combined N in 
the subsurface, but patterns of N uptake and N2 fixation 
are an active area of ongoing study.

F I G U R E  3  A global map of UCYN- B nifH copies plotted from Shao et al. (2023). (a) The geographic distribution of the maximum 
observed UCYN- B nifH copies (>10 copies · L−1) at a location. The plots were compiled from 3416 published observations of UCYN- B 
nifH gene copy number from 0 to 200 m depth (Shao et al., 2023 and references therein). The colors in the circles indicate the maximum 
abundance on a logarithmic scale, the black dots indicate a result reported as below the detection limit by Shao et al. (2023). The 
background color is the nitrate concentration with contour lines indicating the surface nitrate concentrations obtained from the World Ocean 
Atlas 2018. Red lines indicate the 20°C isotherm of the sea surface temperature. (b) Latitudinal distribution of the maximum UCYN- B nifH 
copies (>10 copies · L−1), shown with violin plots using data from Shao et al. (2023). The colored dots show the temperature of the seawater 
at the sampling station. The black dots indicate the absence of temperature data. 
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Both NH+

4
 and NO−

3
 assimilation can save energy 

(ATP) relative to N2 fixation, but Crocosphaera wat-
sonii keeps fixing N2 in the presence of NH+

4
 and 

NO
−

3
 (Dekaezemacker & Bonnet,  2011; Großkopf 

& Laroche,  2012; Masuda et  al.,  2013; Rabouille 
et  al.,  2021). Although C. watsonii is known as free- 
living, self- aggregates of multiple cells have been re-
ported both from field observations (Foster et al., 2013) 
and clonal cultures (Mohr et al., 2013). Aggregation of 
cells may be related to extracellular polysaccharide 
(EPS) production (Foster et  al.,  2013). Observations 
of concurrent combined N assimilation and N2 fixation 
may be related to a division of labor observed among 
C. watsonii sub- populations in self- aggregates in which 
some cells in the population fix N2 and release NH+

4
 while 

other cells take up NH+

4
 (Masuda et al., 2020). Cellular 

heterogeneity in N2 fixation activity was observed from 
in situ Crocosphaera- like cells (Foster et al., 2013) and 
C. watsonii WH8501 and PS0609 isolates (Masuda 
et  al.,  2020; Mohr et  al.,  2013) using a combination 

of stable isotope labeling and NanoSIMS analysis. 
Interestingly about 30% of cells in the culture study of 
Masuda et  al.  (2020) did not perform N2 fixation, but 
these non- N2- fixing cells did perform photosynthesis 
(Masuda et  al.,  2020). Genomic information supports 
both NH+

4
 and NO−

3
 assimilation (Shi et  al.,  2010). In 

sum, these observations suggest C. watsonii can utilize 
both N2 and combined N as nitrogen sources.

The excretion of NH+

4
  is estimated at a range of up 

to 26%–66% of fixed N2 (Dron, Rabouille, Claquin, Le 
Roy, et al., 2012; Masuda et al., 2013). This is a poten-
tially substantial source of so- called new N into low N 
systems. It had previously been shown that NH+

4
 release 

was particularly active for an isolate with larger cell size 
(Crocosphaera watsonii WH0003) compared to a small- 
celled isolate (C. watsonii WH8501; Dekaezemacker & 
Bonnet, 2011), and elevated amounts of EPS have been 
reported from larger cells (>4 μm; Sohm et  al.,  2011; 
Webb et al.,  2009), which could influence patterns in 
self- aggregation. Such self- aggregation may influence 

F I G U R E  4  Relationship of UCYN- B nifH gene copies · L−1 and physical and chemical parameters based on the data set used 
for Figure 3 (Shao et al., 2023 and references therein). UCYN- B nifH gene copies · L−1 against (a) depth, (b) temperature, (c) nitrate 
concentrations, and (d) phosphorus concentrations.
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broader aspects of N or C cycling by sinking fixed C 
and N. For example, C. watsonii was observed to be 
one of the sinking particles during an elevated carbon 
flux event (Poff et al., 2021), and self- aggregation may 
play a role in this carbon flux. Multiple mechanisms for 
acclimation to low dissolved inorganic phosphate (DIP) 
environments have been identified in C. watsonii. For 
example, C. watsonii can grow on dissolved organic 
phosphorus (DOP) instead of DIP as a sole phos-
phorus source including both phosphomonoesters 
and phosphodiesters (Yamaguchi et  al.,  2020), and 
its genome (e.g. strain WH8501) contains genes that 
encode for the alkaline phosphatase enzymes needed 
to hydrolyze dissolved organic phosphoesters (Bench 
et al., 2013; Dyhrman & Haley, 2006). When extracel-
lular P is in excess, C. watsonii uses the constitutively 
expressed phosphate inorganic transport (PIT) system 
to transport P into the cell. Under P- limiting conditions, 
a high- affinity phosphate- specific transport (PST) sys-
tem uses ATP- mediated transport, and the high- affinity 
phosphate- binding protein (PstS) is upregulated to 
maximize phosphate uptake to meet cellular P demand 
(Dyhrman & Haley, 2006; Pereira et al.,  2016). Given 
its regulation pattern, expression of the pstS gene may 
be a good molecular marker of C. watsonii P stress 
(Pereira et al., 2016, 2019). Notably, some C. watsonii 
strains have up to seven copies of the pstS gene (Bench 
et al., 2013). In low DIP environments, toxic arsenate 
could be transported into cells through the PST system, 
but C. watsonii has an arsenate detoxification pathway 
in its genome (Dyhrman & Haley,  2011). Unlike other 
cyanobacteria (i.e., Prochlorococcus, Synechococcus, 
and Trichodesmium), C. watsonii does not substitute 
sulpholipids for phospholipids, nor utilize phosphonates 
in low P environments (Dyhrman & Haley, 2006; Pereira 
et al., 2016; Van Mooy et al., 2009). Recently, a study 
of the interaction between temperature and P limitation 
showed that at elevated temperatures, genes for sulfo-
lipid biosynthesis (sgdB) were upregulated, suggesting 
that C. watsonii may substitute sulpholipids for phos-
pholipids under certain conditions (Deng et al., 2021). 
This potential P sparing mechanism may, in part, un-
derpin the similar low- P and P- replete growth rates 
observed at high temperatures by Deng et  al.  (2021) 
and warrants further study for how this might relate to 
C. watsonii fitness with future global warming.

The distribution of diazotrophs is often con-
strained by the availability of iron (Mills et  al.,  2004; 
Monteiro et al., 2010; Moore et al., 2009). In the case 
of Crocosphaera watsonii WH8501, Fe limitation led to 
a significant decrease in growth rate; C, N, and Chl a 
contents per cell; and N2-  and CO2- fixation rates (Jacq 
et al., 2014). Under Fe stress, C. watsonii induces the 
IdiA protein as a cellular Fe scavenging mechanism 
(Webb et al., 2001). In addition, Fe limitation is known to 
reduce cell size, and this effect has been documented 
for C. watsonii strains WH8501 and WH0003 (Garcia 

et al., 2015; Jacq et al., 2014). Two phases of response 
have been observed depending on the degree of Fe lim-
itation: (i) Under a moderate Fe limitation, the biovolume 
of C. watsonii was strongly reduced, but metabolic activ-
ity remained (Jacq et al., 2014), and (ii) with increasing 
Fe deprivation, biovolume remained unchanged but the 
growth and N2-  and CO2- fixation rates decreased (Jacq 
et al., 2014). Advantages of decreased cell size in a low 
nutrient environment have been proposed, such as a 
high cell surface area- to- volume ratio and thin diffusion 
boundary layer, as well as reduced material and ener-
getic investment for cell division (Garcia et  al.,  2015). 
Interestingly, under P- deficient conditions, C. watsonii 
WH0003 grew and fixed N2 faster when Fe was defi-
cient than when Fe was replete, where decreases in cell 
size were only achieved when Fe and P were co- limiting 
(Garcia et al., 2015). In addition, Fe and P colimitation 
appears to support higher growth when compared to Fe 
or P limitation alone (Yang et al., 2022). This finding sug-
gests the complex influence both Fe and P availability 
may have on C. watsonii growth and N2 fixation.

The Fe half- saturation constant for growth of 
Crocosphaera watsonii was twice as low as that of 
Trichodesmium (Bucciarelli et al., 2013; Jacq et al., 2014), 
indicating C. watsonii may have a competitive advantage 
over Trichodesmium in low Fe environments. One study 
on the interactive effect of Fe and temperature showed 
that at optimum temperature, nitrogen- specific iron- use 
efficiency was higher under Fedepleted conditions than 
Fe replete conditions (Yang et al., 2021). Results of pro-
teomic analysis have suggested that internal Fe recy-
cling between photosynthesis and N2 fixation occurs 
in C. watsonii (Saito et al., 2011). The Fe availability is 
also important in the response of C. watsonii to future 
increased CO2 levels: Growth and N2 fixation are-  pre-
dicted to increase with future increasing CO2 concentra-
tion (Gradoville et al., 2014) but only if Fe is not limiting 
(Fu et al., 2008). Much remains unknown regarding the 
physiological mechanisms that help C. watsonii cope 
with Fe and P limitation.

TEMPORAL SEPARATION OF N2 
FIXATION AND PHOTOSYNTHESIS

A crucial aspect of Crocosphaera watsonii biology is 
the temporal separation of N2 fixation and photosynthe-
sis (Mohr et al., 2010; Shi et al., 2010; Tuit et al., 2004; 
Waterbury & Rippka, 1989; Wilson et al., 2017). Oxygenic 
photosynthesis during the day generates cellular en-
ergy and reductant power, and C. watsonii restrains 
the peak of N2 fixation to the night period when there 
is no light- dependent photosynthesis (Dron, Rabouille, 
Claquin, Le Roy, et al., 2012; Masuda et al., 2018; Shi 
et al., 2010). The temporal segregation helps to solve 
the problem of nitrogenase being inactivated by oxygen, 
a byproduct of oxygenic photosynthesis (Fay,  1992; 
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   | 9CROCOSPHAERA WATSONII

Gallon, 1992). Whole- genome expression analysis on 
C. watsonii grown under a 12:12 h light:dark cycle using 
a microarray identified that 47.4% of genes had a diel 
expression pattern (Shi et al., 2010). This diel expres-
sion pattern was also observed in Crocosphaera field 
populations, underpinning diel changes in N2 fixation 
(Wilson et al., 2017). During periods of light, C. watso-
nii fixes inorganic carbon (Masuda et al.,  2018; Mohr 
et  al.,  2010) and accumulates storage carbohydrates 
(Dron, Rabouille, Claquin, Chang, et al., 2012). A part 
of photosynthetically fixed carbon is exuded outside of 
cells as EPS and transparent exopolymeric particles 
(TEP; Rabouille et  al.,  2017; Sohm et  al.,  2011). The 
internally stored carbohydrates are then degraded and 
used for respiration at the end of the light phase or 
at the beginning of the dark phase (Dron, Rabouille, 
Claquin, Chang, et  al.,  2012) to decrease cellular O2 
concentrations, supply ATP, and reduce the power re-
quired to fuel N2 fixation (Großkopf & Laroche, 2012). 
Without the presence of additional stressors, N2 fixa-
tion starts at the end of the day, peaking in the middle of 
the night (Dron, Rabouille, Claquin, Le Roy, et al., 2012; 
Mohr et al., 2010). This is also the time of DNA synthe-
sis (Dron, Rabouille, Claquin, Le Roy, et al., 2012). Cell 
division in C. watsonii occurs in the middle of the light 
period (Dron et al., 2013; Wilson et al., 2017) in paral-
lel to peaks of carbon fixation and growth. The timing 
of these metabolic processes in cyanobacteria is often 
assumed to be regulated by the circadian clock based 
on the circadian- related kai genes (Shi et  al.,  2010), 
which are proposed to vary with light- driven changes 
in energy metabolism (Rust et al., 2011). However, in 
the case of C. watsonii WH8501, cyclic patterns of gene 
expression related to N2 fixation (nifH), photosynthesis 
(psaC, psbA, and psbO), and circadian clock dynam-
ics (kaiA and kaiC) continues in constant light (Mohr 
et al., 2013; Pennebaker et al., 2010).

PHOTOSYNTHESIS

The photosynthetic apparatus of Crocosphaera watsonii 
is comparable to other unicellular cyanobacteria (Zehr 
et al., 2007), such as the model Synechocystis sp. PCC 
6803. There is strong diel periodicity both in C. watso-
nii's structure and function. Like in other cyanobacteria, 
light is absorbed by pigments of photosynthetic anten-
nae that involve membrane proteins containing chloro-
phyll a and the extramembrane phycobilisomes (Ting 
et  al.,  2002). The dominant phycobilins of C. watsonii 
are the short- wavelength- absorbing phycoerythrin and 
phycourobilin (Webb et al., 2009). This is in contrast to 
UCYN- C (C. subtropica; Mareš et al., 2019) which pre-
dominantly contains the longer- wavelength- absorbing 
phycocyanin. According to genome analysis, C. wat-
sonii strains WH8501 and WH0401 lack the Orange 
Carotenoid Protein (OCP) that is required for the proper 

function of the energy dissipative photoprotection 
mechanism modulating the flow of energy from phyco-
bilisomes to reaction centers in most of the sequenced 
cyanobacteria (Bao et al., 2017; Kerfeld et al., 2017). The 
OCP photoprotective mechanism is also absent in other 
ecologically important marine cyanobacteria from oli-
gotrophic regions (Prochlorococcus, Synechococcus, 
Trichodesmium; Bao et al., 2017; Kelman et al., 2009), 
suggesting that the homeostasis of energy flow under 
conditions of severe nutrient limitations is achieved by 
regulation at other levels, e.g., by investing the excess 
energy into exporting carbon as EPS or TEP. We note 
that C. watsonii WH0003 does possess OCP (Kerfeld 
et  al.,  2017), so there is variability between strains in 
terms of photoprotection mechanisms.

Another mechanism known for optimizing the energy 
flow in cyanobacteria under changing light conditions 
is the so- called state transition (Kirilovsky et al., 2014), 
a process that modulates the coupling and distribution 
of absorbed energy flow from phycobilisomes to pho-
tosystems I and II (PSI and PSII). The presence and 
diel rhythms of state transitions have been reported 
for UCYN- C (Crocosphaera subtropica, formerly 
Cyanothece; Meunier et al., 1997). We have observed 
a similar diel rhythm for state transitions in C. watsonii 
(S. Rana et  al., unpublished data). Recently, another 
photoprotective, energy- quenching mechanism medi-
ated by the IsiA protein has been proposed to operate 
in cyanobacteria, not only under limited Fe concentra-
tions but also under high light (Chen et al., 2017, 2021). 
Crocosphaera watsonii contains the isiA gene. Whether 
this photoprotective mechanism operates in C. watsonii 
under the low Fe and high light conditions that exist in 
oligotrophic areas remains to be elucidated.

The direct effect of illumination on decomposition and 
lack of recovery of PSII in Crocosphaera watsonii has 
been confirmed by biochemical protein analysis together 
with variable chlorophyll fluorescence measurements 
(Masuda et al., 2018; Rabouille & Claquin, 2016). The 
decline of PSII activity and decreased PSII abundance 
in the dark phase has been explained by a combina-
tion of monomerization of PSII and gradual disassem-
bly of a large portion of PSII core complexes (Masuda 
et al., 2018). Specifically, PSII reaction center D1 pro-
tein (PsbA) abundance decreased in the dark, and the 
non- functional version of D1 (due to the absence of key 
amino acid residues essential for binding the oxygen- 
evolving CaMn4O5 clusters; the so- called “rogue” D1 
or rD1; Murray, 2012; Sheridan et al.,  2020; Wegener 
et al., 2015) was detected only in a small percentage of 
PSII during the dark period (Masuda et al., 2018). The 
role of rD1 remains unknown. Suppressed N2 fixation 
activity under a subjective dark period (i.e., a time when 
cells were kept in a continous light condition and not 
returned to the expected dark phase; Mohr et al., 2013) 
together with a decreasing trend of N2 fixation activ-
ity at the beginning of the light period (Compaoré & 
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Stal, 2010; Shi et al., 2010) suggests that nitrogenase 
synthesis is regulated by the circadian clock and is di-
rectly entrained by the energy metabolisms, as Rust 
et al. (2011) posited in relation to Synechococcus elon-
gatus, as well as by inactivation of the nitrogenase com-
plex by O2 generated during photosynthesis.

QUANTITATIVE MODELING

There are a growing number of studies that use quanti-
tative models to evaluate Crocosphaera watsonii bioge-
ography and physiology. This research had its start with 
the numerical modeling of diazotroph biogeography 
as a function of light and resource limitation (Monteiro 
et al., 2010, 2011; Saito et al., 2011). For example, Saito 
et  al.  (2011) used a numerical model and proteom-
ics experimental data from C. watsonii, to argue that 
modulation of iron- metalloenzyme inventory allowed 
Crocosphaera to inhabit a broader range of regions 
low in Fe, predicting a wide distribution in the subtropi-
cal gyres (Saito et al., 2011). Further use of numerical 
models in subsequent studies have been expanded to 
look at broader patterns of diversity and biogeography 
in diazotrophs in general and with Crocosphaera- like 
analogs (Dutkiewicz et al., 2015, 2020).

Separately, more detailed physiological mod-
els have been developed (Grimaud et  al.,  2014; 
Inomura, Deutsch, et al., 2019; Inomura, Masuda, & 
Gauglitz, 2019; Nicholson et al., 2018), which Inomura 
et  al.  (2020) have termed “coarse- grained models” 
(Inomura et al., 2020). These types of models started 
with the representation of C and N fluxes (Grimaud 
et  al.,  2014), and recently, O2 and iron fluxes were 

included (Inomura, Deutsch, et  al.,  2019; Nicholson 
et  al.,  2018). Models focused on day- night cycles 
have shown that the many metabolic pathways in 
Crocosphaera watsonii can be explained by a cel-
lular clock (Grimaud et  al.,  2014). In particular, the 
metabolisms of N2 fixation, respiration, and photosyn-
thesis are strongly coupled with the time- dependent 
allocation of intracellular Fe (Inomura, Deutsch, 
et al., 2019; Figure 5). Also, the temperature depen-
dencies of respiration may explain why C. watsonii 
is constrained to warm regions (Church et al., 2009; 
Fu et  al.,  2014; Moisander et  al.,  2010): Lower tem-
perature may increase the intracellular O2 (Inomura, 
Deutsch, et al., 2019), which may prevent N2 fixation. 
This trait differs from what is observed in UCYN- A: 
UCYN- A may tolerate low temperatures (Harding 
et al., 2018; Shiozaki et al., 2020; Shiozaki, Fujiwara, 
et al., 2018). Another coarse- grained model resolved 
broad- brush macromolecular allocation (Inomura, 
Masuda, & Gauglitz, 2019) based on the chemostat 
culture study of C. watsonii by Masuda et al.  (2013). 
Inomura, Masuda, & Gauglitz (2019) showed the that 
by fixing nitrogen, C. watsonii can increase their pop-
ulation sizes and expand their niche despite the pres-
ence of ammonium. A recent model of O2 diffusion 
coupled with simple metabolic fluxes suggested that 
a strong barrier against oxygen exists in C. watsonii 
(Inomura et al., 2017; Inomura, Deutsch, et al., 2019). 
This barrier is consistent with the idea that hopanoid- 
enriched membranes, which are a found in non- 
heterocyst- forming cyanobacterial diazotrophs like 
C. watsonii, might limit O2 permeability and thus help 
to maintain N2 fixation (Cornejo- Castillo & Zehr, 2019; 
Sáenz,  2010). Last, a recent model resolves a 

F I G U R E  5  An example of a recent quantitative model of Crocosphaera watsonii (Cell Flux Model of Crocosphaera: Inomura, Deutsch, 
et al., 2019). (a) A schematic of the model. (b–e) Model results of diurnal patterns are compared with data. Model results and data are 
represented by curves and circles, respectively. (b–d) N2 fixation, respiration, and photosynthesis under two O2 conditions. Data are from 
Großkopf and LaRoche (2012). (e) Fe allocation within the cell. Gray shading indicates the dark period. Fe allocation data are from Saito 
et al. (2011). 
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   | 11CROCOSPHAERA WATSONII

heterogeneous metabolic population of C. watsonii, 
suggesting that heterogeneous N2 fixation may re-
duce the C requirement of the population, extending 
its viable depth range (Masuda et al., 2020).

CONCLUSIONS

The availability of the environmental nifH sequences 
shed light on the previously unappreciated small unicel-
lular cyanobacterial nitrogen fixer Crocosphaera wat-
sonii (Zehr et al., 2001). Extensive field observations, 
recently compiled by Shao et al. (2023), have corrob-
orated the wide distribution of UCYN- B nifH genes. 
In combination with chemical and physical param-
eters, we now know that UCYN- B nifH gene copies 
are highest in warm (greater than ~25°C), low nutrient 
surface waters; however, its distribution is not limited 
to these regions, and the regulation mechanisms of 
its distribution are not yet well known. Measuring the 
physiological responses of C. watsonii to chemical 
and/or physical changes in laboratory experiments, 
combined with theoretical modeling, is  a promising 
new area of study. Thus, with the increasing amount 
of both field observations and controlling parameters, 
knowledge of the global distribution pattern of C. wat-
sonii and its drivers is expected to increase rapidly in 
the near future.

Over the past decade, multiple approaches have 
been applied and extensive effort has been put toward 
estimating the contribution of Crocosphaera watsonii 
to global N2 fixation, which has led to remarkable dis-
coveries. In the future, it will be important to combine 
in situ observations, culture experiments, and model-
ing to better estimate the contribution of C. watsonii to 
global C and N cycling. For example, current UCYN- B 
nifH gene copy abundances do not directly represent 
cell abundances (Gradoville et  al.,  2022; Sargent 
et al., 2016; White et al., 2018), the ratios of nifH cop-
ies per cell abundances are likely different among dif-
ferent diazotroph groups, and not all the cells fix N2, 
even though all cells fix C (Foster et al., 2013; Masuda 
et al., 2020; Mohr et al., 2013). Even though UCYN- B 
nifH gene copy measurements via qPCR are based 
on the detection of genomic DNA, the significant diel 
changes in DNA topology (Pennebaker et al., 2010), in 
gene expression, and in metabolic activities (Dugenne 
et al., 2020; Shi et al., 2010) indicate that the time of 
the day should be taken into account in future analyses 
of C. watsonii distribution. Furthermore, intriguing but 
not yet fully understood phenomena have been dis-
covered, such as (1) intracellular recycling of Fe (Saito 
et  al.,  2011), photosystem II inactivation in the dark 
(Masuda et al., 2018; Rabouille & Claquin, 2016), (2) 
the division of metabolic activities in the cells of self- 
aggregates (Masuda et al., 2020), and (3) increased 

growth under co- limitation compared to single nutri-
ent limitation (Yang et al., 2022). Although most of the 
studies have focused on the response of C. watsonii 
to physical and chemical conditions, we do not fully 
understand the effects of co- limitation (e.g., tempera-
ture, light, and nutrient source or multiple nutrient 
sources) nor know the full extent of the organisms that 
are grazing C. watsonii (Dugenne et al., 2020; Wilson 
et al., 2017).

Even though most of the culture studies have been 
based on the Crocosphaera watsonii WH8501 strain, 
there is intra- specific C. watsonii diversity (Bench 
et al., 2013). Together with continuous efforts to isolate 
new strains, the comparison of physiological studies 
based on multiple clonal cultures may be important. 
Furthermore, future models of oceanic nutrient cycling 
should consider the phylogenetic and physiological 
diversity of unicellular marine diazotrophs within the 
Crocosphaera genus as well as other related free- 
living and symbiotic lineages. In sum, the drastic di-
urnal variation in metabolisms, including the circadian 
clock, the relationship between photosynthesis and N2 
fixation, and intercellular heterogeneity in metabolic ac-
tivity, make C. watsonii not only an important model for 
learning about diazotrophs but also a model organism 
for studying cyanobacteria in general.
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SUPPORTING INFORMATION
Additional supporting information can be found online 
in the Supporting Information section at the end of this 
article.
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